Acids and Bases

Acid and Base Definitions

- ♦ An *Arrhenius acid* is a chemical compound that increases the concentration of hydrogen ions, H+, in aqueous solution.
- ♦ An *Arrhenius base* is a substance that increases the concentration of hydroxide ions, OH-, in aqueous solution.

Properties of Acids

- Aqueous solutions of acids have a sour taste.
- Acids change the color of acid-base indicators.
- Some acids react with active metals and release hydrogen gas, H₂.
 - ♦ Ba(s) + $H_2SO_4(aq)$ \rightarrow BaSO₄(s) + $H_2(g)$
- ♦ Acids react with bases to produce salts and water.
- Acids conduct electric current.

Some Acids

- Sulfuric Acid
 - Sulfuric acid is the most commonly produced industrial chemical in the world.
- Nitric Acid
 - Used to produce fertilizers
- Phosphoric Acid
 - rust inhibitor, food additive, dental and orthopedic etchant
- Hydrochloric Acid
 - Concentrated solutions of hydrochloric acid are commonly referred to as muriatic acid.
 - Used in producing PVC, descaling, gelatin production and leather processing
- Acetic Acid
 - Pure acetic acid is a clear, colorless, and pungent-smelling liquid known as glacial acetic acid.
 - The active ingredient in vinegar

Bases

- ♦ Aqueous solutions of bases taste bitter.
- Bases change the color of acid-base indicators.
- Dilute aqueous solutions of bases feel slippery.
- Bases react with acids to produce salts and water.
- Bases conduct electric current.

pH

- ▶ pH is the measure of the −log of the H⁺ Ion concentration in solution.
- ▶ Because it is the −log, the higher the concentration, the lower the number
- ♦ The pH Scale goes from 0-14
- ♦ pH of 7 is neutral
 - ♦ Less than 7 is acidic
 - Greater than 7 is basic

Strong Acids vs. Weak Acids

- ♦ A strong acid is one that ionizes completely in aqueous solution.
 - a strong acid is a strong electrolyte
 - ♦ HClO₄, HClO₃ HCl, HNO₃ HBr, HI, H₂SO₄
- ♦ A weak acid releases few hydrogen ions in aqueous solution.
 - hydronium ions, anions, and dissolved acid molecules in aqueous solution
 - HCN
 - Organic acids (—COOH), such as acetic acid

Strong acids	Weak acids	
$HI + H_2O \longrightarrow H_3O^+ + I^-$	$HSO_4^- + H_2O$	\longrightarrow H ₃ O ⁺ + SO ₄ ²⁻
$HClO_4 + H_2O \longrightarrow H_3O^+ + ClO_4^-$	$H_3PO_4 + H_2O$	\longrightarrow H ₃ O ⁺ + H ₂ PO ₄ ⁻
$HBr + H_2O \longrightarrow H_3O^+ + Br^-$	$\mathrm{HF} + \mathrm{H_2O}$	\longrightarrow H ₃ O ⁺ + F ⁻
$HC1 + H_2O \longrightarrow H_3O^+ + C1^-$	$CH_3COOH + H_2$	$O \rightleftharpoons H_3O^+ + CH_3COO^-$
$H_2SO_4 + H_2O \longrightarrow H_3O^+ + HSO_4^-$	$H_2CO_3 + H_2O$	\longrightarrow H ₃ O ⁺ + HCO ₃
$HClO_3 + H_2O \longrightarrow H_3O^+ + ClO_3^-$	$H_2S + H_2O$	\longrightarrow H ₃ O ⁺ + HS ⁻
	$HCN + H_2O$	\longrightarrow H ₃ O ⁺ + CN ⁻
	$HCO_3^- + H_2O$	\longrightarrow H ₃ O ⁺ + CO ₃ ²⁻

Neutralization Reactions

- ◆ Acid Base Reactions that have equal amounts of the H₃O⁺ and OH⁻ Ions
- ♦ They produce H₂O and a Salt

List of Strong Acids and Bases

Strong Acids	Strong Bases
HCl Hydrochloric	NaOH
HBr Hydrobromic	КОН
HI Hydroiodic	RbOH
H ₂ SO ₄ Sulfuric Acid	CsOH
HNO ₃ Nitric Acid	Ca(OH) ₂
HClO ₄ Perchloric Acid	Sr(OH) ₂
HC1O ₃	Ba(OH) ₂

Self ionization of water

- Water can dissociate too!
- ♦ The normal dissociation for water is 0.0000001M H⁺

pOH

- ♦ pOH is the measure of the −log of the OH⁻ Ion concentration in solution.
- pOH + pH = 14
- ♦ Because it is the −log, the higher the concentration, the lower the number
- ♦ The pOH Scale goes from 0-14
- pOH of 7 is neutral
 - Less than 7 is basic
 - Greater than 7 is acidic