Acids and Bases #### Acid and Base Definitions - ♦ An *Arrhenius acid* is a chemical compound that increases the concentration of hydrogen ions, H+, in aqueous solution. - ♦ An *Arrhenius base* is a substance that increases the concentration of hydroxide ions, OH-, in aqueous solution. ### Properties of Acids - Aqueous solutions of acids have a sour taste. - Acids change the color of acid-base indicators. - Some acids react with active metals and release hydrogen gas, H₂. - ♦ Ba(s) + $H_2SO_4(aq)$ \rightarrow BaSO₄(s) + $H_2(g)$ - ♦ Acids react with bases to produce salts and water. - Acids conduct electric current. #### Some Acids - Sulfuric Acid - Sulfuric acid is the most commonly produced industrial chemical in the world. - Nitric Acid - Used to produce fertilizers - Phosphoric Acid - rust inhibitor, food additive, dental and orthopedic etchant - Hydrochloric Acid - Concentrated solutions of hydrochloric acid are commonly referred to as muriatic acid. - Used in producing PVC, descaling, gelatin production and leather processing - Acetic Acid - Pure acetic acid is a clear, colorless, and pungent-smelling liquid known as glacial acetic acid. - The active ingredient in vinegar #### Bases - ♦ Aqueous solutions of bases taste bitter. - Bases change the color of acid-base indicators. - Dilute aqueous solutions of bases feel slippery. - Bases react with acids to produce salts and water. - Bases conduct electric current. # pH - ▶ pH is the measure of the −log of the H⁺ Ion concentration in solution. - ▶ Because it is the −log, the higher the concentration, the lower the number - ♦ The pH Scale goes from 0-14 - ♦ pH of 7 is neutral - ♦ Less than 7 is acidic - Greater than 7 is basic # Strong Acids vs. Weak Acids - ♦ A strong acid is one that ionizes completely in aqueous solution. - a strong acid is a strong electrolyte - ♦ HClO₄, HClO₃ HCl, HNO₃ HBr, HI, H₂SO₄ - ♦ A weak acid releases few hydrogen ions in aqueous solution. - hydronium ions, anions, and dissolved acid molecules in aqueous solution - HCN - Organic acids (—COOH), such as acetic acid | Strong acids | Weak acids | | |---|-------------------------------|---| | $HI + H_2O \longrightarrow H_3O^+ + I^-$ | $HSO_4^- + H_2O$ | \longrightarrow H ₃ O ⁺ + SO ₄ ²⁻ | | $HClO_4 + H_2O \longrightarrow H_3O^+ + ClO_4^-$ | $H_3PO_4 + H_2O$ | \longrightarrow H ₃ O ⁺ + H ₂ PO ₄ ⁻ | | $HBr + H_2O \longrightarrow H_3O^+ + Br^-$ | $\mathrm{HF} + \mathrm{H_2O}$ | \longrightarrow H ₃ O ⁺ + F ⁻ | | $HC1 + H_2O \longrightarrow H_3O^+ + C1^-$ | $CH_3COOH + H_2$ | $O \rightleftharpoons H_3O^+ + CH_3COO^-$ | | $H_2SO_4 + H_2O \longrightarrow H_3O^+ + HSO_4^-$ | $H_2CO_3 + H_2O$ | \longrightarrow H ₃ O ⁺ + HCO ₃ | | $HClO_3 + H_2O \longrightarrow H_3O^+ + ClO_3^-$ | $H_2S + H_2O$ | \longrightarrow H ₃ O ⁺ + HS ⁻ | | | $HCN + H_2O$ | \longrightarrow H ₃ O ⁺ + CN ⁻ | | | $HCO_3^- + H_2O$ | \longrightarrow H ₃ O ⁺ + CO ₃ ²⁻ | | | | | #### Neutralization Reactions - ◆ Acid Base Reactions that have equal amounts of the H₃O⁺ and OH⁻ Ions - ♦ They produce H₂O and a Salt # List of Strong Acids and Bases | Strong Acids | Strong Bases | |--|---------------------| | HCl Hydrochloric | NaOH | | HBr Hydrobromic | КОН | | HI Hydroiodic | RbOH | | H ₂ SO ₄ Sulfuric Acid | CsOH | | HNO ₃ Nitric Acid | Ca(OH) ₂ | | HClO ₄ Perchloric Acid | Sr(OH) ₂ | | HC1O ₃ | Ba(OH) ₂ | | | | #### Self ionization of water - Water can dissociate too! - ♦ The normal dissociation for water is 0.0000001M H⁺ ## pOH - ♦ pOH is the measure of the −log of the OH⁻ Ion concentration in solution. - pOH + pH = 14 - ♦ Because it is the −log, the higher the concentration, the lower the number - ♦ The pOH Scale goes from 0-14 - pOH of 7 is neutral - Less than 7 is basic - Greater than 7 is acidic