Calorimetry Worksheet

Please calculate all the answers for energy in calories and Joules.

1) How much energy was required to take 25 g of water that was originally at $20^{\circ} \mathrm{C}$ to $57^{\circ} \mathrm{C}$? (Remember the Specific Heat of water is $1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$)
2) How much energy is required to take 159 g of Water from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$?
3) When a 25.7 g sample of Nal dissolves in 80.0 g of water in a calorimeter, the temperature rises from 20.5 C to 24.4 C. Calculate the change in heat for the process. $\quad \mathrm{NaI}(\mathrm{s}) \rightarrow \mathrm{Na}(\mathrm{aq})+\mathrm{I}(\mathrm{aq})$ (Don't freak out, this is the same as the previous problem it just sounds more complex. You have all of the parts you need just plug them in to your formula $q=m C \Delta T$)
4) When a 16.9 g sample of NaOH dissolves in 70.0 g of water in a calorimeter, the temperature rises from 22.4 C to 86.6 C. Calculate the change in heat for the process. $\quad \mathrm{NaOH}(\mathrm{s})---\mathrm{Na}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq})$
5) What is the specific heat of aluminum if the temperature of a 28.4 g sample of aluminum is increased by 8.1 C when 207 J of heat is added. (Use the same formula, you are just solving for a different variable)
6) How much energy will it require if 35 grams of Aluminum are cooled from $95^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$? The Heat Capacity of Aluminum is $.89 \mathrm{~J} / \mathrm{g} \mathrm{K}$.
7) If I burn 0.315 moles of hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ in a bomb calorimeter containing 5.65 liters of water, what's the molar heat of combustion of hexane is the water temperature rises $55.4^{\circ} \mathrm{C}$? The heat capacity of water is 4.184 $\mathrm{J} / \mathrm{g}^{0} \mathrm{C}$.
8) If I burn 22.0 grams of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ in a bomb calorimeter containing 3.25 liters of water, what's the molar heat of combustion of propane if the water temperature rises $29.5^{\circ} \mathrm{C}$?
