SSM Final Paper

- Introduction: address initial claim, and your reaction.
- Body, dedicate at lease one paragraph to each source and how it supports/refutes your claim.
- Conclusion: was the initial claim valid? Refuted?

• REMEMBER! Don't make any claim that you can't back up with evidence.

Test Corrections

- Due by 5pm Friday.
- You can come in to work on them:
 - Today at lunch
 - Tomorrow at Lunch
 - Tomorrow after school

Sophomores...

• Make sure you get stamped TODAY to avoid being late.

Conversions Flowchart, Pg. 120

Introduction to Stoichiometry

Target: Today I will be able to determine an unknown quantity of a substance using the balanced chemical reaction. **Pg. 123**

Stoichiometry

- Reaction Stoichiometry involves the mass relationship between reactants and products in a chemical reaction.
- Requires a balanced reaction.
 - Balanced reactions tell you the mole ratio; a conversion factor that relates the amount of any substance in a reaction to the other substances.

Mole ratio practice:

- For the equation: 2 wheels + 1 frame → 1 bike write all possible mole ratios.
 - 2 wheels / 1 bike OR 1 bike / 2 wheels
 - 1 frame / 1 bike OR 1 bike / 1 frame
 - 2 wheels / 1 frame OR 1 frame / 2 wheels

Mole ratio practice

• Write all possible mole ratios for the reaction: $2\text{HgO} \rightarrow 2\text{Hg} + \text{O}_2$

Stoichiometry

• The stoichiometry of a balanced chemical equation allows us to solve many problems where a quantity of a substance is KNOWN and another quantity of another substance is UNKNOWN.

Example 1:

• How many bikes can be build using 24 wheels?

Given:

Find:

24 wheels

bikes

2 wheels = 1 bike

Example 2: mol → mol

• How many moles of LiOH are needed to react with 20mol CO₂?

$$CO_2 + 2LiOH \rightarrow Li_2CO_3 + H_2O$$

Given:

20mol CO₂

 $1 \text{ mol CO}_2 = 2 \text{mol LiOH}$

Find:

____ mol LiOH

Example 3: $mol \rightarrow g$

• What mass of CO₂ is needed to react 3.00mol of H₂O?

$$6CO_2 + H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

Given:

 $3.00 \text{ mol H}_2\text{O}$

 $6 \text{ mol CO}_2 = 1 \text{ mol H}_2\text{O}$

 $44.01g CO_2 = 1 mol CO_2$

Find:

____g CO₂

Example 4: $g \rightarrow g$

Given: $33.0g N_2O$ $44.02g N_2O = 1 \text{ mol } N_2O$ $1 \text{ mol } N_2O = 1 \text{ mol } NH_4NO_3$ $80.06 g NH_4NO_3 = 1 \text{ mol } NH_4NO_3$ Find:

 $\underline{}$ g NH₄NO₃

Conversions Flowchart, Pg. 120

Homework

• Finish Molar Mass worksheet (Pg. 122)

• Stoichiometry worksheet (Pg. 122) Due Friday, 2/7

• SSM Final Draft and bibliography; hardcopy Due Friday, 2/7