More Limiting Reactant Practice | 1. | Calculate the theoretical yield of Fe in grams , and identify the limiting reactant using the reactant amounts and equation given. | | | | |---|---|-----------------------------------|---|----------------| | $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ | | | | | | 167 | <u>ven</u> :
7g Fe ₂ O ₃
8g CO | 203 1 300 7 210 1 3 | Find: Theoretical Yield: Limiting Reactant: | | | 2. | Calculate the theoretical yield of | • | entify the limiting react | ant using the | | | reactant amounts and equation gi | ven. | | | | | Fe | $_2O_3 + 3CO \rightarrow 2Fe + 3$ | CO_2 | | | 167 | ven:
7g Fe ₂ O ₃
8g CO | | Find: Theoretical Yield: Limiting Reactant: | _ | | 3. | Calculate the theoretical yield of reactant amounts and equation gi | | entify the limiting reac | tant using the | | | | $2Na + Br_2 \rightarrow NaBr$ | | | | 1.8 | <u>ven</u> :
mol Na
mol Br ₂ | | Find: Theoretical Yield: Limiting Reactant: | |