Name _	
Box	

Chemistry Stoichiometry Practice Show Work (Given/Find, Picket Fence and units)

- 1. How many moles of HNO₃ will be produced when 0.51 mol of N₂O₅ reacts according to the following equation? N₂O₅ + H₂O \rightarrow 2HNO₃
- 2. How many moles of NaBr will be produced when 0.39 mol of bromine gas reacts according to the following equation? Br₂ + 2NaI→ 2NaBr + I₂
- 3. How many moles of hydrogen will be produced if 0.44 mol of CaH₂ reacts according to the following equation? CaH₂+ 2H₂O \rightarrow Ca(OH) ₂ + 2H₂
- 4. How many moles of oxygen will be needed to react with 0.38 mol of C_3H_8 according to the following equation? $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$
- 5. How many moles of water will be produced if 2.35 mol of oxygen gas reacts according to the following equation? $2C_6H_6 + 15O_2 \rightarrow 12 CO_2 + 6H_2O$
- 6. How many moles of magnesium are required to react with 2.0 mol of hydrochloric acid (HCl)? The equation for this reaction is Mg + 2 HCl→MgCl₂+H₂
- 7. Aluminum reacts with HCl to produce aluminum chloride(AlCl₃) and hydrogen gas. Write a balanced equation for the reaction and calculate the number of moles of HCl required to react with 0.87 mol of Al.
- 8. Glucose ($C_6H_{12}O_6$) combines with O_2 in the body to produce carbon dioxide and water. Write a balanced equation for this reaction. How many moles of O_2 are required to combine with 0.25 mol of glucose? How many moles CO_2 and H_2O would be produced in the reaction?

9. Calcium carbonate (CaCO₃) combines with HCl to produce calcium chloride (CaCl₂), water and carbon dioxide gas. Write the balanced equation for this reaction. How many moles of HCl are required to react with 2.5 mol of CaCO₃? How many moles of CO₂ would be produced?

- 10. Determine the mass of lithium hydroxide produced when 0.38g of lithium nitride reacts with water according to the following equation: Li₃N+3H₂O→NH₃+3LiOH
- 11. Determine the mass of carbon dioxide produced when 0.85g of butane, C_4H_{10} , reacts with oxygen gas according to the following equation: $2C_4H_{10}+130_2 \rightarrow 8CO_2+10H_2O$
- 12. Determine the mass of antimony produced when 0.46g of antimony(III) oxide, $Sb_2O_{3,}$ reacts with carbon according to the following equation: $Sb_2O_{3+3}C \rightarrow 2Sb+3CO$
- 13. Determine the mass of sodium nitrate produced when 0.73g of nickel(II) nitrate, Ni(NO₃)₂, reacts with sodium hydroxide, NaOH, according to the following equation: Ni(NO₃)₂+2NaOH→Ni(OH)₂+2NaNO₃
- 14. Determine the mass of calcium hydroxide Ca(OH)₂ produced when calcium Carbide (CaC₂) reacts with 0.64g of water according to the following equation: CaC₂+2H₂O→Ca(OH)₂+C₂H₂